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Abstract
A new type of surface electromagnetic waves localized near the interface of
the halves of the same transparent uniaxial magnetic gyrotropic medium is
theoretically predicted. The gyration vectors of the halves are perpendicular
to the interface and are oppositely directed to each other. Existence of such
waves is due to both anisotropy of the medium and non-coincidence of the
gyration vector directions on different sides of the interface. Distribution of
intensity and variation of polarization of the surface polaritons as a function of
the distance from the interface are studied. It is shown that the surface waves
under consideration can be excited in uniformly magnetized ferromagnetics
with axis of easy magnetization if their frequency does not exceed the magnetic
resonance frequency.

PACS numbers: 42.25.Bs, 71.36.+c, 75.30.Gw

1. Introduction

At present a new kind of surface electromagnetic waves along with familiar surface polariton
excitations (surface exitons, surface plasmons, phonon polaritons [1–3]) is being studied.
Existence of these waves is the result of anisotropy of border media [4–11]. Such waves were
theoretically predicted for the first time by Marchevsky et al [4] and D’yakonov [5] and were
called singular [4] or dispersionless [8–10] surface waves. Inasmuch as the energy localization
of these waves near the interface is due to interaction of inhomogeneous partial waves in an
anisotropic medium (in a uniaxial crystal these are ordinary and extraordinary waves) the term
‘anisotropy-driven polariton’ or simply ‘anisotropic polariton’ was proposed [7].

The specific feature of the singular surface electromagnetic waves in the general case is
impossibility of their propagation in an arbitrary chosen direction along the interface. For
example, if a positive uniaxial crystal borders with an isotropic medium and its optical axis
is parallel to the interface then the surface waves can travel only in some allowed directions
which form sectors in the cut plane [5]. The lesser the anisotropy of the crystal, the smaller
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the angular width of these sectors. If the uniaxial crystal is negative then the surface waves
cannot be excited in any direction along the cut plane. The sectors of the allowed propagation
directions of surface waves are typical also for the boundary between a biaxial crystal and an
isotropic medium [7, 10, 11] and between two identical positive uniaxial crystals with different
orientation of optical axes [6, 8].

We have derived [14] the dispersion dependences for surface polaritons in arbitrary
linear bianisotropic media and have proposed the general approach based on the integral
representation of the surface wave impedance tensors for contacting media. This approach
was earlier worked out by Stroh, Barnett, Lothe and Chadwick in theory of surface acoustical
waves in anisotropic media (see [15] and references cited there). Then they applied it to
study the surface waves in cubic, hexagonal, orthorhombic and monoclinic elastic materials.
Constitutive equations for the monochromatic electromagnetic field with frequency ω in a
bianisotropic medium have the form (see [16–18])

D(ω) = ε(ω)E(ω) + α(ω)H(ω), B(ω) = β(ω)E(ω) + µ(ω)H(ω), (1)

where ε, µ, α, β are three-dimensional complex tensors of the second rank. If the medium
is transparent then tensors ε and µ are Hermitian (ε+ = ε, µ+ = µ) and β = α+ where
a sign + denotes Hermitian conjugation. In the general case, equations (1) involve 72 real
parameters (for a transparent medium they involve 36 parameters). Singular surface waves
arise in anisotropic transparent media for which equations (1) have the simplest form with
α = β = 0, µ = 1, and the dielectric permittivity tensor ε is symmetric and real (6 parameters,
three of them are independent). It is evident that such waves can be excited also in magnetically
ordered media (ferromagnetics and antiferromagnetics) when α = β = 0 and magnetic
permeability µ is a complex tensor. Whereas the tensor nature of the permittivity ε becomes
apparent as a rule in an optical frequency band the permeability µ becomes a tensor quantity
in the radio-frequency band (sometimes for antiferromagnetics in hyperhigh-frequency band).
Furthermore in the presence of the external stationary magnetic field or residual magnetization
the tensor µ is non-symmetric and for transparent media can be represented by the sum of the
symmetric real part and antisymmetric imaginary part. The latter corresponds to special kind
of a high-frequency anisotropy of matter—gyrotropy. For uniaxial crystals such representation
has the form [16]

µ = µ1 + (µ2 − µ1)c ⊗ c + igc×, (2)

where µ1, µ2 are scalar parameters, g is a gyration parameter, c is the unit vector directed along
the higher order rotational axis of symmetry, gc is the gyration vector, c ⊗ c is a dyad (direct
product of vectors), c× is the antisymmetric tensor dual to the vector c (c×

ik = eijkcj , eijk

is the Levi-Civita tensor). In (2) multiplication of the parameter µ1 by the unit tensor 1 in
three-dimensional space is intended.

Properties of magnetic materials and electromagnetic waves in magnetics are the
subject of investigation in numerous works and monographs. These materials find various
applications in radio electronics and optoelectronics [19]. Comprehensive experimental
researches of magnetics were started by Curie [20] who studied the temperature dependency
of magnetization of diamagnetic, paramagnetic and ferromagnetic substances. One of the
first systematical formulations of a molecular theory of magnetism was given in Bloch’s
monograph [21]. As is known, consistent and logically complete theory of magnetism is
quantal and statistical (see for example, [22–24]). Optical and microwave properties of
magnetic materials are being studied, on the one hand, phenomenologically with the use of
the constitutive equations of the form of (1) or their relativistic analogues [17, 25] allowing
for temporal and spatial dispersion [28, 30] and, on the other hand, on the basis of modern
quantum field theory [22, 29]. Note in this connection that the basic equations of the optics
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of anisotropic magnetic crystals turn out to be similar to the equations which determine light
propagation in a gravitational field in vacuum [26, 27]. This analogy enables us to treat the
laws of crystal optics geometrically and to consider that light in magnetic anisotropic media
propagates along the world lines of zero length as in the vacuum. Magnetic anisotropy reveals
itself as a metric property of space.

Electromagnetic waves in magnetically ordered media are usually called magnetic
polaritons. The waves which propagate along the interface of two different magnetic media or
along the interface of a magnetic medium and vacuum are called surface magnetic polaritons.
As a rule, when such surface magnetic polaritons are considered the semi-infinite medium is
supposed to be magnetized parallel to the interface [32]. At that the surface polaritons exhibit
nonreciprocal properties of a gyromagnetic medium. For the simplest case of the interface
of the semi-infinite gyromagnetic medium and vacuum such nonreciprocity consists in very
different dispersion relations, and hence velocities and polarizations for the modes propagating
in opposite directions k and −k [33].

In the present paper we predict the existence of a special type of surface magnetic
polaritons which arise due to the difference in the directions of the gyration vectors of the
contacting uniaxial magnetic materials. The boundaries of the two materials are considered,
one of them is characterized by the magnetic permeability tensor µ (2) with positive µ1 and
µ2 and the other by the complex conjugate tensor µ′:

µ′ = µ1 + (µ2 − µ1)c ⊗ c − igc× (3)

which corresponds to the opposite direction of the gyration vector. It is assumed that vector
c is perpendicular to the interface. The interface can be built up by cutting an unbounded
magnetic gyrotropic crystal by the plane perpendicular to c then rotating one of the crystal
halves of 180◦ about an axis in the cut plane and joining the crystal halves. It is clear that
at g = 0 tensors µ and µ′ coincide, i.e. the crystal is completely restored when its parts are
joined. So in this case no surface wave excitations are possible. The purpose of the paper is
in establishing the relationship between parameters µ1, µ2 and g �= 0 such that excitation of
the surface magnetic polaritons turns out to be possible.

The paper is organized as follows. In section 2 expressions are given which describe the
field distribution of the surface electromagnetic wave at the interface of linear bianisotropic
media. General conditions are indicated when the energy of the wave field is localized on both
sides of the interface. For that the dimensionless frequency of the wave ν = ω/(ck) should
not exceed the minimum of two values of the so-called limiting frequencies of body waves
in the contacting media [13, 14]. These limiting frequencies can be found geometrically by
studying the sections of the refraction surface. The limiting frequencies for body waves in the
case of transparent uniaxial magnetic gyrotropic crystals under consideration are calculated
in section 3.

The dispersion equation for surface magnetic polaritons is derived in section 4 in two
ways. For convenience of the reader not acquainted with the main results of works [13, 14]
the dispersion equation is derived in a standard way by starting from Maxwell’s equations
and boundary conditions. On the other hand, the same equation is obtained on the basis of
integral representation of the surface impedance tensors [14] which are calculated in appendix
A. Note that there also exist some other approaches to study surface electromagnetic waves in
complex structures. In particular, in paper [34] a dispersion equation is proposed along with
examination of the existence of its solutions by finding the poles of the complex reflection and
transmission coefficients of the electromagnetic waves.

In section 5 the relations between parameters µ1, µ2 and g are obtained when the
dispersion equation for the surface magnetic polaritons has solutions. It is shown that



312 A N Furs and L M Barkovsky

depending on the gyration parameter g decay of the amplitudes of the inhomogeneous partial
waves in each gyrotropic medium when moving away from the interface can be either purely
exponential or spatially oscillating. In this section we investigate variation of the polarization of
the surface polaritons and distribution of the energy density and energy-flux density depending
on the distance from the interface. A practically important case of small gyrotropy is also
considered and the penetration depth of surface waves as a function of g is estimated.

In sections 3–5 we do not specify the frequency dependence of inverse dielectric
permittivity a = ε−1 and parameters µ1, µ2 and g involved in (2) and (3). It is assumed
that these parameters are specified at a fixed frequency ω of surface wave in a microwave
frequency band. In the final section 6 in the absence of an external stationary magnetic field,
the interface of the uniformly magnetized ferromagnetics with axis of easy magnetization is
considered for which well-known resonance dependence of µ1, µ2 and g on ω [28, 31, 32]
is taken into account. For this case, dispersion curves k = k(ω) at different values of the
anisotropy factor of the magnetization energy are plotted.

In this paper, we use the notation of multiplication operations with three-dimensional
scalars, vectors and tensors accepted in [11, 14, 16]. The scalar (internal) product of vectors
u and v is marked as uv, the vector (external) product as u × v and the tensor product as
u⊗v. The scalar product of a tensor β and a vector u is marked as βu, at that (βu)i = βijuj .
For vector v and the antisymmetric tensor u× dual to vector u the relations u×v = u × v,
vu× = v × u hold.

2. The field distribution of the surface electromagnetic wave

Surface electromagnetic waves at the interface of arbitrary linear bianisotropic media are
described by equations (see, for example, [14])

H(r, t) =
2∑

s=1

CsH
0
s exp[ik(b + ηsq)r − iωt],

E(r, t) =
2∑

s=1

CsE
0
s exp[ik(b + ηsq)r − iωt].

(4)

It is supposed that the z-axis of the Cartesian system of coordinates is perpendicular to the
interface z = 0. In equations (4) k is a wave number and ω is a frequency of the surface
wave; the unit normal vector to the interface q is oriented in positive direction; the unit
vector b determines the propagation direction of the surface wave (bq = 0); Cs are weight
factors which characterize the contribution of partial waves and the amplitudes of magnetic and
electric fields relating to the interface are H0

s and E0
s (s = 1, 2). We consider that equations (4)

relate to the medium situated in half-space z < 0 and in this connection the imaginary parts
of the complex decay coefficients ηs are negative. This ensures reduction of the field intensity
as we move away from the interface. For the medium in half-space z > 0 the field intensities
H ′(r, t) and E′(r, t) are described by expressions analogous to (4). We mark the appropriate
amplitudes, weight factors and decay coefficients as H ′

s
0, E′

s
0, C ′

s , η
′
s , and here Im η′

s > 0.
The dimensionless reduced frequency ν = ω/(ck) represents the phase velocity of the

surface wave expressed in units of velocity c of light in vacuum.
In paper [14] a general formalism has been developed which allows uniform derivation

of the surface-wave dispersion relations for the interface of bianisotropic media when vectors
b and q are arbitrarily oriented with respect to crystallographic symmetry elements of the
contacting media. It has been established that the necessary and sufficient condition of
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nonvanishing imaginary parts of coefficients ηs and η′
s , s = 1, 2, is

0 � ν < ν̂L = min(νL, ν ′
L), (5)

where νL and ν ′
L are the so-called limiting frequencies of body waves in the contacting media.

They can be found geometrically with the use of the sections of the refraction surface by the
plane passing through vectors b and q (reference plane). Namely, the limiting frequency is
the reciprocal of the distance from the reference point O to the straight line that is parallel
to vector q and is tangent to the outer section curve of the refraction surface. According to
inequality (5) the phase velocity of the surface wave is subluminal, i.e. less than the phase
velocities of any body waves travelling along b in each contacting medium.

3. The interface of magnetic gyrotropic media. Refraction surface sections and
limiting frequencies

Consider the boundary of two transparent uniaxial magnetic gyrotropic crystals of trigonal,
tetragonal or hexagonal symmetry. Let these crystals at frequency ω be characterized by
inverse dielectric permittivity a = ε−1 > 0 and magnetic permeability tensors µ (2) and µ′

(3) with positive µ1 and µ2. The normal q to the interface is regarded coincident with c. It is
clear that in this case all propagation directions b of surface waves along the interface z = 0
are equivalent.

To calculate limiting frequencies νL and ν ′
L we study refraction surfaces that are the locus

of extreme points of the body wave refraction vectors m = nn with origins aligned at a
reference point O. Here n is an unit vector of the wave normal and n is a refractive index.
Maxwell’s equations for body waves in the medium with the magnetic permeability tensor
being equal to µ (2) take the form [16]

m×E = µH, am×H = −E. (6)

Eliminating vector E from (6), we get

(am×m× + µ)H = 0. (7)

The equation of the refraction surface (Fresnel equation) is written as det(am×m× + µ) = 0.
Now we choose an orthonormal basis e1, e2, e3 with e3 = c. In this basis the tensors m× and
µ are represented by matrices 0 −m3 m2

m3 0 −m1

−m2 m1 0

 and

µ1 −ig 0
ig µ1 0
0 0 µ2


so the equation of the refraction surface takes the form

a2
(
m2

1 + m2
2 + m2

3

)[
µ1
(
m2

1 + m2
2

)
+ µ2m

2
3

]
− a
{
[µ1(µ1 + µ2) − g2]

(
m2

1 + m2
2

)
+ 2µ1µ2m

2
3

}
+ µ2

(
µ2

1 − g2
) = 0. (8)

The gyration parameter g appears in relation (8) quadratically. Consequently, the equation
of the refraction surface for body waves in the crystal situated in the half-space z > 0 and
characterized by the magnetic permeability tensor µ′ = µ∗ is the same. Therefore limiting
frequencies νL and ν ′

L coincide and to find the quantity ν̂L = νL it is sufficient to proceed from
equation (8).

As is obvious from (8) the refraction surface is axially symmetric. Consider its section
by the reference plane passing through vectors b and q = c. Let the components of a vector
m lying in this plane be mb and mq . Then m2

b = m2
1 + m2

2,mq = m3 and the equation of the
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Figure 1. The refraction surface sections by the reference plane: on the left for a = 1, µ1 = 2.5,

µ2 = 1, g = 0.6; on the right for a = 1, µ1 = 1.8, µ2 = 1, g = 1.3.

section curves is

a2
(
m2

b + m2
q

)(
µ1m

2
b + µ2m

2
q

)
− a
{
[µ1(µ1 + µ2) − g2]m2

b + 2µ1µ2m
2
q

}
+ µ2

(
µ2

1 − g2
) = 0. (9)

Further we transform equation (9), following the technique stated in paper [11] which
dealt in particular with the calculation of the limiting frequencies of body waves in biaxial
dielectric crystals. We introduce polar coordinates |m| and θ , and find the squared refraction
vector

m2 = 1

2a
(µ1 cos2 θ + µ2 sin2 θ)−1

{
[µ1(µ1 + µ2) − g2] cos2 θ

+ 2µ1µ2 sin2 θ ±
√

[µ1(µ1 − µ2) − g2]2 cos4 θ + 4µ2
2g

2 sin2 θ
}
. (10)

Minus and plus signs of the radical in formula (10) correspond to the inner S1 and outer S2

section curves, respectively. Returning to variables mb and mq , and introducing the notation
κ = m2

q

/
m2

b, we have for S2

2am2
b(1 + κ)(µ1 + µ2κ) = µ1(µ1 + µ2) − g2

+ 2µ1µ2κ +
√

[µ1(µ1 − µ2) − g2]2 + 4µ2
2g

2κ(1 + κ). (11)

In figure 1 the refraction surface sections are shown that are plotted with the use of
formulae (10) for different values of parameters a, µ1, µ2, g. It is seen that the part of the
outer section curve near the point of intersection A of the curve and the mb-axis can be either
convex or concave. The distance of the straight line L which is tangent to the outer curve
and parallel to vector q from reference point O, is the reciprocal of the limiting frequency
1/νL and is calculated differently for convexity and concavity. For the part of the curve under
consideration the value of κ is small and so we retain in equation (11) the terms which are
linear with respect to κ:

2am2
b[µ1 + (µ1 + µ2)κ)] = µ1(µ1 + µ2) − g2

+ 2µ1µ2κ + |µ1(µ1 − µ2) − g2| +
2µ2

2g
2κ

|µ1(µ1 − µ2) − g2| . (12)
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Equation (12) is stated in different ways depending upon how quantities g2 and µ1(µ1 − µ2)

are ordered:

aµ1

µ2
1 − g2

m2
b +

a
[
µ2

1(µ1 − µ2) − g2(µ1 + µ2)
](

µ2
1 − g2

)
[µ1(µ1 − µ2) − g2]

m2
q = 1, if g2 < µ1(µ1 − µ2), (13)

a

µ2
m2

b +
a(µ2 − µ1)

g2 − µ1(µ1 − µ2)
m2

q = 1, if g2 > µ1(µ1 − µ2). (14)

Thus, in the linear approximation with respect to κ the part of the outer section curve near
mb-axis is a conic section—ellipse or hyperbola (g2 �= µ1(µ1 − µ2)).

For the case g2 = µ1(µ1 − µ2) equations (12), (13) and (14) are inapplicable and a
separate consideration is needed. Equation (9) takes the form

a
(
m2

b + m2
q

)(
aµ1m

2
b + aµ2m

2
q − 2µ1µ2

)
+ µ1µ

2
2 = 0.

Using an expansion mb = b0 + b1mq + b2m
2
q + · · · in a power series with respect to small mq ,

we obtain

mq ≈ ±2
√

µ1

µ1 − µ2

(
mb −

√
µ2

a

)
.

So the parts of the section curves S1 and S2 near mb-axis are straight lines, and point A is a
point of intersection of S1 and S2.

Let µ1 < µ2. In this case the equation of the part of the outer curve is (14) for arbitrary
values of g. It describes an ellipse, since the co-factor of m2

q is positive (i.e. the part of the
curve S2 is convex, and line L is tangent to the curve at point A). The length of the line segment
OA is a semi-axis of the ellipse equal to

√
µ2/a. Consequently, the limiting frequency is

determined by νL = √
a/µ2.

Now turn to the contrary case µ1 > µ2. Assume the relation g2 < µ2
1(µ1 − µ2)/(µ1 +

µ2) < µ1(µ1 − µ2). Then in equation (13) the co-factor of m2
q is positive, and this equation

describes the ellipse with semi-axis OA of length
√(

µ2
1 − g2

)/
(aµ1). Consequently, the

limiting frequency is equal to νL =
√

aµ1
/(

µ2
1 − g2

)
.

If g2 > µ2
1(µ1 − µ2)/(µ1 + µ2), then depending on whether the parameter g2 is less

than µ1(µ1 − µ2) or not, one should consider either equation (13) or equation (14). In both
cases the part of the outer section curve close to the point A is a hyperbola (i.e. it is concave).
This implies that the straight line L does not pass A and is tangent to the outer curve at two
points. Here the calculation of the quantity νL is more complicated. For contact points the
relation dmb/dmq = 0 holds. Supposing that mq �= 0 for these points, we differentiate both
sides of equation (9) with respect to mq , considering coordinate mb as an implicit function of
mq . Then we set derivatives dmb/dmq to zero. As a result we obtain the following relation
between the coordinates mq and mb of the contact points:

m2
q = µ1

a
− µ1 + µ2

2µ2
m2

b. (15)

Substituting (15) into (9), we have
1
4a2(µ1 − µ2)

2m4
b − aµ2g

2m2
b + µ2

2g
2 = 0.

Since νL = 1/mb, the limiting frequency νL satisfies the equation

µ2
2g

2ν4
L − aµ2g

2ν2
L + 1

4a2(µ1 − µ2)
2 = 0. (16)

Equation (16) has a solution

ν2
L ≡ ν̃2

L = a

2µ2

[
1 +

1

|g|
√

g2 − (µ1 − µ2)2

]
. (17)
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Table 1. Limiting frequencies νL for surface electromagnetic waves in magnetic gyrotropic
crystals.

Relations between
Case µ1 and µ2 Parameter g Limiting frequency νL

(i) µ1 < µ2 Any νL =
√

a
µ2

(ii(a)) µ1 > µ2 g2 � µ2
1(µ1−µ2)

(µ1+µ2)
νL =

√
aµ1

(µ2
1−g2)

(ii(b)) µ1 > µ2 g2 >
µ2

1(µ1−µ2)

(µ1+µ2)
νL = ν̃L (formula (17))

In (17) we choose the plus sign of the radical to ensure smooth joining of solution (17) and
the solutions for νL that have been found earlier. Indeed, choosing such a sign, from (17) at
g2 = µ2

1(µ1 − µ2)/(µ1 + µ2) we arrive at ν̃2
L = a(µ1 + µ2)/(2µ1µ2). It is easy to see that the

same expression for ν2
L at g2 specified above can be obtained from the earlier derived formula

ν2
L = aµ1

/(
µ2

1 − g2
)
.

The values of the limiting frequencies found in this section are listed in table 1.

4. Derivation of the dispersion equation for ν = ω/(ck)

We shall obtain a dispersion equation for surface electromagnetic waves at the boundary of
two media with the magnetic permeability tensors µ (2) and µ′ (3) using relations (6) and (7)
and the boundary conditions. Each of the inhomogeneous partial waves determining the field
distribution (4) is associated with its complex refraction vector

ms = ck

ω
(b + ηsq) = 1

ν
(b + ηsq), s = 1, 2. (18)

Since m×m× = m ⊗ m − m2 [16], from (7) the following equations for the amplitudes H0
s

of the partial waves can be obtained:[
ams ⊗ ms − am2

s + µ1 + (µ2 − µ1)c ⊗ c + igc×]H0
s = 0.

To simplify the following notation we omit the indices s. Let Hb,Hq,Ha be components of
the vector H0 in the orthonormal basis consisting of vectors b, q and a = b × q. Taking into
account that c = q, we have the following vector equation:

[ab ⊗ b + aη(b ⊗ q + q ⊗ b) + aη2q ⊗ q − a(1 + η2) + µ1ν
2

+ ν2(µ2 − µ1)q ⊗ q + igν2q×](Hbb + Hqq + Haa) = 0. (19)

Opening the brackets on the left-hand side of equation (19), we represent it as decomposition
with respect to the basis vectors b, q, a and then set the coefficients of these vectors to zero:

−(aη2 − µ1ν
2)Hb + aηHq + igν2Ha = 0, aηHb − (a − µ2ν

2)Hq = 0,

igν2Hb + (aη2 + a − µ1ν
2)Ha = 0. (20)

The system of linear homogeneous equations (20) is compatible if the parameter η satisfies
the equation

Aη4 + Bη2 + C = 0, (21)

where

A = a2µ2, B = a[a(µ1 + µ2) − 2µ1µ2ν
2],

C = [aµ1 − (µ2
1 − g2

)
ν2
]
(a − µ2ν

2).
(22)
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In this case one of the components of the vector H0, e.g. Hb, can be taken arbitrarily and the
other two are expressed in terms of it:

Hq = aη

a − µ2ν2
Hb, Ha = − igν2

aη2 + a − µ1ν2
Hb. (23)

Note that equation (21) can be straightforwardly obtained from (9) if one puts mb =
1/ν,mq = η/ν according to relations (18). Its solutions ηj = ηj (ν), j = 1, . . . , 4, are
functions of a dimensionless frequency ν (or velocity in units of c) of the surface wave.
According to (5) they are complex if and only if 0 � ν < νL where limiting frequencies νL are
determined by table 1. At ν = νL at least two solutions ηj become real and the partial waves
corresponding to them will no longer be localized near the interface (see (4)). Equation (4)
involves the two roots η1, η2 out of the four possible roots of (21), for which the imaginary
parts are negative, and so

η2
1,2 = 1

2aµ2

[−a(µ1 + µ2) + 2µ1µ2ν
2 ±

√
a2(µ1 − µ2)2 − 4µ2g2ν2(a − µ2ν2)

]
. (24)

Since equation (21) includes even powers of η, for the two remaining solutions we have
η3 = −η1, η4 = −η2.

Taking Hb = (aη2 +a −µ1ν
2)(a −µ2ν

2), in accordance with (23) we find the amplitudes
of the magnetic field intensity of the partial waves:

H0
s = (aη2

s + a − µ1ν
2
)
(a − µ2ν

2)b + aηs

(
aη2

s + a − µ1ν
2
)
q − igν2(a − µ2ν

2)a. (25)

To calculate the amplitudes of the electric field intensity we use the second equation (6) and
substitute (18) and (25) into it:

E0
s = igaνηs(a − µ2ν

2)b − igaν(a − µ2ν
2)q − aµ2νηs

(
aη2

s + a − µ1ν
2
)
a. (26)

The relations obtained above concern the gyrotropic medium situated in the half-space
z < 0. When the second contacting medium is under consideration one should replace g

by −g throughout. Equation (21) does not change in this regard. But now the solutions of
this equation have to be selected which have positive imaginary parts: η′

1 = −η1, η
′
2 = −η2.

Therefore the amplitudes of the partial waves are

H ′
s

0 = (aη2
s + a − µ1ν

2
)
(a − µ2ν

2)b − aηs

(
aη2

s + a − µ1ν
2
)
q + igν2(a − µ2ν

2)a, (27)

E′
s

0 = igaνηs(a − µ2ν
2)b + igaν(a − µ2ν

2)q + aµ2νηs

(
aη2

s + a − µ1ν
2
)
a. (28)

Further we take into consideration the boundary conditions comprising the continuity of
the tangential components of magnetic and electric field at the interface:

C1H
0
1τ + C2H

0
2τ = C ′

1H
′
1

0
τ + C ′

2H
′
2

0
τ , C1E

0
1τ + C2E

0
2τ = C ′

1E
′
1

0
τ + C ′

2E
′
2

0
τ . (29)

In (29) C1, C2, C
′
1, C

′
2 are weight factors. The tangential amplitude components of the partial

waves can be found from formulae (25)–(28) when in these formulae the terms depending on
vector q are discarded. Equations (29) may be simplified to(
aη2

1 + a − µ1ν
2)D(−)

1 +
(
aη2

2 + a − µ1ν
2)D(−)

2 = 0, η1D
(−)
1 + η2D

(−)
2 = 0, (30)

D
(+)
1 + D

(+)
2 = 0, η1

(
aη2

1 + a − µ1ν
2
)
D

(+)
1 + η2

(
aη2

2 + a − µ1ν
2
)
D

(+)
2 = 0, (31)

where we have

D(±)
s = Cs ± C ′

s , s = 1, 2.
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With the assumption that η1 �= η2, system (30) has non-trivial solutions D
(−)
1 and D

(−)
2 if

a − µ1ν
2 − aη1η2 = 0. (32)

Analogously, system (31) has non-trivial solutions D
(+)
1 and D

(+)
2 if

a − µ1ν
2 + a

(
η2

1 + η2
2 + η1η2

) = 0. (33)

It is evident that equations (32) and (33) are incompatible. Only one of these equations can
be fulfilled, so the following two cases are possible.

(I) Equation (32) holds. Then D
(+)
1 = D

(+)
2 = 0, i.e. C ′

1 = −C1, C
′
2 = −C2, and at the same

time C2 = −C1η1/η2.
(II) Equation (33) holds. Then D

(−)
1 = D

(−)
2 = 0, i.e. C1 = C ′

1 = −C2 = −C ′
2.

In both cases the absolute values of the coefficients C1 and C ′
1 (C2 and C ′

2) are equal. The
magnetic permeability tensors µ and µ′ of the contacting media differ in the sign of igq× only.
By virtue of this symmetry, the field distribution on both sides of the interface is determined
by the same absolute-value weights of partial waves.

The complex decay coefficients η1 and η2 can either be pure imaginary or can have
nonzero real parts (for the latter case η2 = −η∗

1). This question will be discussed in detail in
the next section. Here it is essential that η1η2 < 0. Applying the quadratic formula to the
equation (21), we have

η1η2 = −
√

C

A
= − 1

a
√

µ2

√[
aµ1 − (µ2

1 − g2
)
ν2
]
(a − µ2ν2),

η2
1 + η2

2 = −B

A
= − 1

aµ2
[a(µ1 + µ2) − 2µ1µ2ν

2].

(34)

As a result we arrive at the following dispersion equation for surface polaritons at the interface
of magnetic gyrotropic media:

f (ν)h(ν) = 0, (35)

where

f (ν) = √
µ2(a − µ1ν

2) +
√[

aµ1 − (µ2
1 − g2

)
ν2
]
(a − µ2ν2),

h(ν) = µ1

√
a − µ2ν2 +

√
µ2
[
aµ1 − (µ2

1 − g2
)
ν2
] (36)

are functions which, up to a constant, follow from the left-hand side of equations (32) and
(33), when relations (34) are substituted.

Function h(ν) is strictly positive at any value of ν in the interval [0, νL), whichever are
the values of limiting frequencies νL enumerated in table 1. Therefore in fact the dispersion
equation is set down in the form f (ν) = 0. Thus, only one case (I) of two, (I) and (II), can be
realized.

Let us mention another method of derivation of equation (35) with the use of the surface
impedance tensors γ and γ ′ for waves in contacting media. These tensors constrain the
resulting electric and magnetic fields at the interface. With the use of boundary conditions,
the dispersion equation can be obtained [35, 36] in the form

(γ − γ ′)t = 0, (37)

where subscript t marks a trace of tensor and γ − γ ′ is the adjoined tensor of γ − γ ′ [16].
In appendix A with the use of the general integral formalism in the theory of surface

polaritons, worked out in [14], tensors γ and γ ′ are obtained for surface waves in the magnetic
gyrotropic crystals under consideration:

γ = i
√

a

ν
√

�(ν)

[
h(ν)ν2

√
µ2

a − µ2ν2
b ⊗ b + igν2√µ2(b ⊗ a − a ⊗ b) − f (ν)a ⊗ a

]
, (38)
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γ ′ = − i
√

a

ν
√

�(ν)

[
h(ν)ν2

√
µ2

a − µ2ν2
b ⊗ b − igν2√µ2(b ⊗ a − a ⊗ b) − f (ν)a ⊗ a

]
,

(39)

where

�(ν) = a(µ1 + µ2) − 2µ1µ2ν
2 + 2

√
µ2
[
aµ1 − (µ2

1 − g2
)
ν2
]
(a − µ2ν2). (40)

Substituting equations (38) and (39) into (37), we obtain

4a

�(ν)

√
µ2

a − µ2ν2
f (ν)h(ν) = 0. (41)

It is easy to show that the function �(ν) is equal to (B + 2
√

AC)/a (see (22)) and is strictly
positive at any values of ν in the interval [0, νL) for all cases enumerated in table 1. So
equation (41) in fact reduces to (35).

5. Analysis of solutions of the dispersion equation. Existence conditions of surface
polaritons

As was shown in section 4 the dispersion equation for surface electromagnetic waves at the
interface of magnetic gyrotropic media with magnetic permeability tensors µ (2) and µ′ (3),
c = q is written as f (ν) = 0 or, in expanded form

√
µ2(a − µ1ν

2) +
√[

aµ1 − (µ2
1 − g2

)
ν2
]
(a − µ2ν2) = 0. (42)

Rationalizing (42), we obtain the equation

µ2g
2ν4 + a[µ1(µ1 − µ2) − g2]ν2 − a2(µ1 − µ2) = 0 (43)

and formally find its presumably nonnegative solution ν2 = ν2
S

ν2
S = a

2µ2g2

{√
[µ1(µ1 − µ2) + g2]2 − 4g2(µ1 − µ2)2 − µ1(µ1 − µ2) + g2

}
(44)

which corresponds to the squared reduced frequency of the surface wave. It is of major
importance to search for those values of the material parameters a, µ1, µ2 and g when
equation (42) has solution ν = νS in the interval [0, νL) (i.e. when parameters ηs (24) are
complex, and the energy of the wave is localized near the interface). Note that f (ν) in (36) is
a decreasing function and it is positive at the left-hand end point of the interval: f (0) > 0. It
is evident that the necessary and sufficient existence condition of solutions of equation (42) is
negativity of the function f (ν) at the right-hand end point of the interval:

f (νL) < 0. (45)

If the solution exists then it is unique.
Now we analyse whether condition (45) is satisfied for each of the cases enumerated in

table 1.

Case (i), µ1 < µ2. Condition (45) is not satisfied:

f (νL) = a√
µ2

(µ2 − µ1) > 0.

Case (ii(a)), µ1 > µ2. Condition (45) is satisfied if g �= 0:

f (νL) = −ag2√µ2

µ2
1 − g2

< 0.
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Figure 2. Dependence νS = νS(g) (solid line) and νL = νL(g) (dashed line) at a = 1, µ1 =
1.2, µ2 = 1.

Case (ii(b)), µ1 > µ2. We make use of the relation√
µ2
[
aµ1 − (µ2

1 − g2
)̃
ν2

L

](
a − µ2̃ν

2
L

) = − 1
2

[
µ1
(
a − µ2̃ν

2
L

)
+ µ2

(
a − µ1̃ν

2
L

)]
, (46)

which is derived in appendix B. We have

f (νL) = √
µ2
(
a − µ1̃ν

2
L

)
+
√[

aµ1 − (µ2
1 − g2

)̃
ν2

L

](
a − µ2̃ν

2
L

)
= 1√

µ2

{
µ2
(
a − µ1̃ν

2
L

)− 1

2

[
µ1
(
a − µ2̃ν

2
L

)
+ µ2

(
a − µ1̃ν

2
L

)]}
= a

2
√

µ2
(µ2 − µ1) < 0.

In this case condition (45) is satisfied too.
Thus, dispersion equation (42) has a solution and it is unique if the following simple

relations for parameters of the contacting media are fulfilled:

µ1 > µ2, g �= 0. (47)

Surface electromagnetic waves can be excited only if the adjoining halves of the magnetic
crystal are both anisotropic (non-coincidence of µ1 and µ2) and gyrotropic. In the absence
of at least one of these features, excitation of surface waves is impossible. Moreover, the
first relation (47) indicates that the crystal has to be negative (i.e. in the limit g → 0 the
refractive index of body ordinary waves no = √

µ1/a is greater than the refractive indices of
extraordinary waves ne =

√
µ1µ2/[a(µ1 cos2 θ + µ2 sin2 θ)], see equations (10)).

In figure 2 dependence of the dimensionless phase velocity νS of the surface
electromagnetic wave on the gyration parameter g is plotted at fixed values of the parameters
a, µ1 and µ2 (see formula (44)). Also the appropriate values of the limiting frequencies νL of
the body waves depending on g are plotted according to the formulae of table 1.

Substituting solutions (44) of the dispersion equation into relations (24), we get plots
of real and imaginary parts of decay coefficients η1 and η2 of partial waves depending on g

(figure 3). If gyrotropy of the media is not large (g does not exceed value g0, see formula
(50) below) these decay coefficients are pure imaginary and the field intensities of the partial
waves vanish exponentially when the point of observation moves away from the interface. As
g → 0 one of the coefficients (for definiteness, η1) tends to zero, the second remains finite.
This implies that for the limiting case of the non-gyrotropic medium, one of the partial waves
becomes delocalized (weakly inhomogeneous), and the second remains strongly localized.
But the weight factor C2 = −C1η1/η2 of the strongly localized wave here is much less than
the weight factor C1 of the weakly localized wave (see figure 4). Thus, as g → 0 the surface
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Figure 3. Dependences of Imηs (light-faced lines) and Reηs (bold-faced lines) on parameter g at
a = 1, µ1 = 1.2, µ2 = 1.
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Figure 4. Relative weights |C1| and |C2| of partial waves (a = 1, µ1 = 1.2, µ2 = 1).

wave is transformed into a body wave and this is confirmed by the small difference between
νS and νL at g ≈ 0 (figure 2).

At g > g0 the pattern of change in the partial wave intensities when moving away from
the interface becomes quite different. In this case coefficients η1 and η2 have non-zero real
parts which are opposite in sign. The amplitudes of the partial waves obey the ‘decaying sine’
law while |z| is increased. Imaginary parts of η1 and η2 are the same and, furthermore, stop
depending on g and remain equal to ηim (figure 3). Relative weights of the partial wave are
the same and equal to 1

2 (figure 4).
Let us find the critical value g0 that corresponds to reconstruction of the wave solutions.

At g = g0 parameters η1 and η2 coincide and setting the radical expression in (24) to zero
gives

4µ2
2g

2ν4 − 4aµ2g
2ν2 + a2(µ1 − µ2)

2 = 0. (48)

Solving (43) and (48) with respect to ν2, we have

ν2 = a(µ1 + 3µ2)

4µ1µ2
. (49)

Moreover, substitution of relation (49) into (48) gives the desired value g0:

g = g0 = 2µ1

√
µ1 − µ2

3(µ1 + 3µ2)
. (50)

The imaginary parts of the decay coefficients η1 and η2 are obtained by substitution of (49)
into (24): Im η1,2 = ηim = − 1

2

√
(µ1 − µ2)/µ2.
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Figure 5. Dependence of parameters p and α on the normalized distance Z from the interface
(a = 1, µ1 = 1.2, µ2 = 1, dashed lines—g = 0.2, solid lines—g = 0.6, dot-and-dash lines—
g = 1.3). Critical value is g0 = 0.3024.

Now we determine polarization of the surface wave. Using arbitrariness of choice of
weight factor C1, we put C1 = η2/(η1 − η2). Then C2 = −η1/(η1 − η2). The intensities of
magnetic and electric field at the interface are determined by the equations

H0 =
2∑

s=1

CsH
0
s , E0 =

2∑
s=1

CsE
0
s .

According to formulae (25) and (26) subjected to (32), we have

H0 = a2η1η2(η1 + η2)q + igν2(a − µ2ν
2)a,

E0 = aν[ig(a − µ2ν
2)q − aµ2η1η2(η1 + η2)a].

(51)

The coefficients of vectors q and a in (51) are pure imaginary. Consequently, at the interface
z = 0 the wave is transverse (bH0 = bE0 = 0) and linearly polarized.

To calculate polarization outside of the interface one should use formulae (4). It turns
out, that at z �= 0 the surface wave is elliptically polarized, the semi-minor axis of the
polarization ellipse being oriented along unit vector b of the direction of wave propagation
and the semi-major axis lying in the plane passing through vectors q and a. Let us introduce
polarization parameter p which is the ratio of the length of the semi-minor axis to the length of
the semi-major axis (p = 0 corresponds to linear polarization, p = 1 corresponds to circular
polarization). Also we characterize inclination of the polarization ellipse to the interface by
angle α (0 � α � π): d = a cos α + q sin α, where d is the unit vector directed along the
semi-major axis. In figure 5 for different g, a plot of parameters p and α for the electric field
E versus the normalized distance from the interface Z = |z|/λ0 is made. Here λ0 = 2πc/ω is
the wave length in vacuum. The type of these plots is essentially different for values of g less
than g0 (50) and for values of g that exceed g0. In the first case p and α change monotonically,
tending to some limiting values at |z| → ∞. In the second case they change periodically (it
is clear that here the polarization ellipse continuously rotates about b while |z| is increased).
The parameters change identically for both contacting media and only directions of traversal
of the polarization ellipses are opposite for each of the media.

The time averaged energy density of the electromagnetic field and the Poynting vector
are calculated by the formulae

w = 1

16π

(
1

a
E∗E + H∗µH

)
, S = c

8π
Re(E × H∗) (52)

(for the field in half-space z > 0 all quantities in (52) are replaced by primed ones). Let w0

and S0 is the energy density and Poynting vector near the interface, respectively. Dependence
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Figure 6. The normalized time averaged energy density of the surface wave as a function of
distance Z (a = 1, µ1 = 1.2, µ2 = 1, solid bold-faced line—g = 0.05, dashed line—g = 0.2,
solid light-faced line—g = 0.6, dot-and-dash line—g = 1.3).

of the normalized energy density W = w/w0 on distance Z = |z|/λ0 for different g is shown
in figure 6. As a numerical calculation shows the energy-flux density S is parallel to vector
b at any z. Furthermore, dependence of the normalized energy-flux density |S|/|S0| on Z
completely coincides with that of the normalized energy density W .

Now consider a practically important case of weakly gyrotropic media (g ≈ 0).
We represent the quantity ν2 as an expansion in a power series with respect to g2:
ν2 = c0 + c2g

2 + c4g
4 + · · · and substitute this expansion into the dispersion equation (43).

Keeping in (43) the powers of g not higher than the fourth, we get

ν2 = ν2
S ≈ a

µ1

[
1 +

g2

µ2
1

− 2µ2 − µ1

µ4
1(µ1 − µ2)

g4

]
. (53)

The squared reduced frequency ν2
S of the surface wave differs from the squared limiting

frequency ν2
L of the appropriate body wave only in terms with the fourth and higher powers of

the parameter g:

ν2
L = aµ1

µ2
1 − g2

≈ a

µ1

(
1 +

g2

µ2
1

+
g4

µ4
1

)
.

Similarly, substituting equation (53) into (21), (22) and taking into consideration the
expansion η2 = d0 + d2g

2 + d4g
4 + · · ·, we estimate the decay coefficients of partial waves:

η1 ≈ −i
g2

µ2
1

√
µ2

µ1 − µ2
,

η2 ≈ −i

√
µ1 − µ2

µ2
− 2g2

µ2
1

+
3µ2 − 2µ1

µ4
1(µ1 − µ2)

g4 ≈ −i

(√
µ1 − µ2

µ2
− g2

µ2
1

√
µ2

µ1 − µ2

)
.

(54)

The energy density distribution of the electromagnetic field at g ≈ 0 is determined substantially
by the contribution of the weakly inhomogeneous partial wave with decay coefficient η1 and
is proportional to exp(−2ikη1|z|) = exp(−4π iη1Z/ν), Z = |z|/λ0. Taking into account the
first of formulae (54) and the approximate formula ν ≈ √

a/µ1, we obtain an estimate of a
characteristic penetration depth of the surface wave, for which the wave intensity is 1

e of the
intensity at the interface:

Z̃ = 1

4πg2

√
aµ3

1(µ1 − µ2)

µ2
.

Thus, the penetration depth is inversely proportional to the squared gyration parameter g2.
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Figure 7. Dispersion dependences (a = 1, dashed line—β = 0.2, solid line—β = 0.5, dot-and-
dash line—β = 1).

6. Interface of ferromagnetics with the axis of easy magnetization

The relations obtained above concern arbitrary uniaxial magnetic gyrotropic crystals whose
material parameters a, µ1, µ2 and g at frequency ω of surface wave are regarded as given.
Now consider surface polaritons at the interface of the uniformly magnetized ferromagnetics
with axis of easy magnetization [28, 32] and magnetization vectors M and M ′ which are
perpendicular to the interface and directed oppositely (M ′ = −M). In the absence of
dissipation, the ferromagnetic in half-space z < 0 is described by a magnetic permeability
tensor µ (2), and the ferromagnetic in half-space z > 0 by the complex conjugate tensor µ′

(3). If an external stationary magnetic field is absent then the parameters involved in (2), (3)
as a function of frequency ω are calculated by the formulae

µ1 = 1 +
4π

β

ω2
M

ω2
M − ω2

, µ2 = 1, g = −4π

β

ωωM

ω2
M − ω2

, (55)

where ωM = �βM is a resonance frequency, � is the magnetomechanical ratio, M = |M |
is a magnetization and β is an anisotropy factor. Here we do not take into consideration the
presence of a transition layer between ferromagnetics1 owing to rearrangement of domain
structures near the interface, and suppose that the interface is sharp.

Since parameters µ1 and µ2 are regarded throughout to be positive, we do not consider
frequencies of surface waves in the interval (ωM, ωM

√
1 + 4π/β), when µ1 is negative. It is

easy to see that according to the existence condition (47), a surface wave at the interface of
ferromagnetics can be excited if its frequency ω does not exceed the value ωM. In this context
the decay coefficients of partial waves η1 and η2 are pure imaginary at any values of ωM and
β. That corresponds to exponential decay of these waves while distance |z| from the interface
is increased. Really, one can show that g2 does not exceed a critical value g2

0 (50). For this
purpose we introduce a normalized frequency � = ω/ωM (0 < � < 1) and the designation
δ = 4π/β, then we find a lower bound of g2

0 − g2, substituting (55) into (50):

g2
0 − g2 = δ

3(1 − �2)2[4(1 − �2) + δ]
{4(1 − �2 + δ)2 − 3δ�2[4(1 − �2) + δ]}

>
δ

3(1 − �2)2[4(1 − �2) + δ]
{4(1 − �2 + δ)2 − 3δ[4(1 − �2) + δ]}

= δ[2(1 − �2) − δ]]2

3(1 − �2)2[4(1 − �2) + δ]
� 0.

1 Study of surface polaritons taking into account a transition layer between gyrotropic crystals is a subject for future
publication.
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Plots of dispersion dependences for a series of values of anisotropy factor β are presented
in figure 7. In this figure normalized frequencies � are the abscissae, and normalized wave
numbers K = ck/ωM = �/ν the ordinates. The reduced frequency ν is found by formula (44)
when equations (55) are substituted into it. One can see that as ω → ωM the wave number k
becomes infinite (ν → 0). Thus, at frequencies close to resonance frequency ωM, the surface
wave is in essence magnetostatic (some other illustrations of excitation of body and surface
magnetostatic waves in magnetically ordered media are given, e.g., in [32]).

7. Concluding remarks

Existence conditions (47) for surface magnetic polaritons are simple and can be satisfied
in a broad frequency band. In particular, for transparent uniformly magnetized uniaxial
ferromagnetics this band spreads from 0 to ωM. Separate study is needed for the case of
negative values of µ1 and µ2. Energy absorption can be considered if parameters µ1 and µ2

are taken complex.
By analogy with the term ‘anisotropy-driven polaritons’ introduced in [7] to designate

singular surface electromagnetic waves in anisotropic dielectric media, we propose the
term ‘magnetic gyrotropy-driven polaritons’ for the surface waves considered in this paper.
Existence of such waves is possible given gyrotropic properties and magnetic anisotropy
(non-coincidence of µ1 and µ2) of bordering media.

Expressions (38) and (39) for the surface impedance tensors obtained in this work can be
applied for studying the surface waves at the interface of a magnetic gyrotropic crystal with
magnetic permeability tensor (2) and isotropic medium with scalar magnetic permeability µ′

too. For this purpose one should put g = 0, µ1 = µ2 = µ′ in (39) and then substitute tensors
γ and γ ′ into the dispersion equation (37).
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Appendix A. Surface impedance tensors γ and γ′

As was shown in paper [14], the surface impedance tensors for surface waves propagating
along the interface of linear bianisotropic media have the form

γ = 1

ν
Q−(−iI − S), γ ′ = 1

ν
Q′−(iI − S ′), (A.1)

where I = −q×q× = 1 − q ⊗ q is the operator of orthogonal projection onto the interface
plane with unit normal q, sign − marks operation of pseudoinversion of a tensor (i.e. inversion
in the two-dimensional subspace of three-dimensional space which is orthogonal to q, e.g.,
QQ− = Q−Q = I ). Tensor γ relates to the medium situated in half-space z = qr < 0, and
tensor γ ′ to the medium situated in half-space z > 0. Planar tensors Q and S involved in the
first of formulae (A.1) have the following integral representation:

Q = − 1

π

∫ π

0
(e2 e2)

− dφ, S = − 1

π

∫ π

0
(e2 e2)

−(e2 e1) dφ, (A.2)

where tensorial bilinear forms (uv) of vectorial arguments u and v for magnetic crystals with
the dielectric permittivity and magnetic permeability tensors ε and µ are calculated in the
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following way2:

(uv) = Iu×ε−1v×I + ub ⊗ bvν2IµI − (aε−1a − ν2qµq)−1

× (Iu×ε−1a + ν2Iµq ⊗ bu) ⊗ (aε−1v×I − ν2vb ⊗ qµI). (A.3)

In (A.3) b is the unit vector directed along the propagation direction of the surface wave, and
a = b × q. Unit vectors e1 and e2 are defined in the following way:

e1 = b cos φ + q sin φ, e2 = −b sin φ + q cos φ.

Tensors Q′ and S ′ are calculated by the formulae analogous to (A.2)–(A.3) with replacement
of tensors ε and µ in (A.3) by tensors ε′ and µ′ that relate to the medium z > 0.

Let us calculate tensorial bilinear forms (e2 e2) and (e2 e1) for the medium characterized
by scalar inverse dielectric permittivity a = ε−1 and tensorial magnetic permeability (2)
(c = q). For that, in (A.3) we put vector u equal to e2, and vector v equal to e2 or e1,
respectively. We obtain

(e2 e2) = ν2

(
aµ2 cos2 φ

a − µ2ν2
+ µ1 sin2 φ

)
b ⊗ b

+ igν2 sin2 φ(b ⊗ a − a ⊗ b) − [a cos2 φ + (a − µ1ν
2) sin2 φ]a ⊗ a, (A.4)

(e2 e1) = sin φ cos φ

[(
a2

a − µ2ν2
− a − µ1ν

2

)
b ⊗ b − igν2(b ⊗ a − a ⊗ b) − µ1ν

2a ⊗ a

]
.

(A.5)

The planar tensor (e2 e2) in the two-dimensional subspace of the interface is associated
with the 2×2 matrix with elements that equal the coefficients of dyads b⊗b, b⊗a, a⊗b, a⊗a

in formula (A.4). Its determinant (or trace of the tensor adjoined to (e2 e2) [16]) equals

(e2 e2)t = − ν2

a − µ2ν2
(A cos4 φ + B sin2 φ cos2 φ + C sin4 φ),

where quantities A,B and C are given by formulae (22). Pseudoinverse tensor (e2 e2)
− is

associated with the inverse 2 × 2 matrix. Therefore

(e2 e2)
− = (A cos4 φ + B sin2 φ cos2 φ + C sin4 φ)−1

{
1

ν2
(a − µ2ν

2)[a cos2 φ

+ (a − µ1ν
2) sin2 φ]b ⊗ b + ig(a − µ2ν

2) sin2 φ(b ⊗ a − a ⊗ b)

− [aµ2 cos2 φ + µ1(a − µ2ν
2) sin2 φ]a ⊗ a

}
. (A.6)

Further we calculate tensors Q and S (A.2). Product (e2 e2)
−(e2 e1) of tensors (A.6) and

(A.5) includes odd powers of cos φ and sin φ only, so the integral of this product over φ is
equal to zero: S = 0. Simultaneously we have

Q = − 1

ν2
(a − µ2ν

2)[aJ20 + (a − µ1ν
2)J02]b ⊗ b

− ig(a − µ2ν
2)J02(b ⊗ a − a ⊗ b) + [aµ2J20 + µ1(a − µ2ν

2)J02]a ⊗ a,

where

(J02; J20) = 1

π

∫ π

0

(sin2 φ; cos2 φ) dφ

A cos4 φ + B sin2 φ cos2 φ + C sin4 φ
(A.7)

2 Formula (A.3) can be obtained from the general equation (18) of paper [14], if the tensors α̂ and β̂ corresponding
to magnetoelectric coupling in constitutive equations are taken as zero.
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(subscripts refer to powers of cos φ and sin φ, respectively, in the numerator of the integrand
fraction). Calculating the integrals (A.7), we obtain

Q = 1√
a�(ν)

{
− 1

ν2

[
a − µ2ν

2

√
µ2

+ (a − µ1ν
2)r

]
b ⊗ b

− igr(b ⊗ a − a ⊗ b) + (
√

µ2 + µ1r)a ⊗ a

}
,

where

r =
√

a − µ2ν2

aµ1 − (µ2
1 − g2

)
ν2

,

and the function �(ν) is given by formula (40).
Finally, we calculate the determinant of the matrix associated with the planar tensor Q:

Qt = −r/(aν2√µ2), and find the pseudoinverse tensor Q−:

Q− =
√

a√
�(ν)

−ν2

µ2

√
aµ1 − (µ2

1 − g2
)
ν2

a − µ2ν2
+ µ1

√
µ2

 b ⊗ b

− igν2√µ2(b ⊗ a − a ⊗ b)

+
[√

µ2(a − µ1ν
2) +

√[
aµ1 − (µ2

1 − g2
)
ν2
]
(a − µ2ν2)

]
a ⊗ a

 .

Since S = 0, then according to the first of formulae (A.1) the surface impedance tensor γ

differs from Q− only in the common multiplier −i/ν and has the form (38), where functions
f (ν) and h(ν) (36) are applied.

The magnetic permeability tensor µ′ of the border medium in half-space z > 0 differs
from µ only in the sign of the parameter g. Therefore an expression for the surface impedance
tensor γ ′ is obtained from (38) with a change of g to −g. Moreover, comparison of the two
formulae (A.1) (S = S ′ = 0) shows that the sign of expression (38) must be reversed too. As
a result we arrive at expression (39).

Appendix B. Derivation of formula (46)

It is not difficult to make sure that the substitution of (22) into the expression (B2 − 4AC)/

(4a2) at ν = ν̃L gives the left-hand side of equation (16). Therefore
1

a2
(B2 − 4AC)

∣∣∣∣
ν=ν̃L

= �(̃νL)�1(̃νL) = 0. (B.1)

In (B.1) �(ν) = (B + 2
√

AC)/a is the function introduced by formula (40), and �1(ν) =
(B − 2

√
AC)/a. Let us show that �1(̃νL) �= 0. Really, taking into account equation (17) and

the inequality g2 > µ2
1(µ1 − µ2)/(µ1 + µ2) (see table 1, case (ii(b))), we have

�1(̃νL) = 1

a
(B − 2

√
AC)

∣∣∣∣
ν=ν̃L

<
B

a

∣∣∣∣
ν=ν̃L

= a(µ1 + µ2) − 2µ1µ2̃ν
2
L

= a

[
µ2 − µ1

√
1 − 1

g2
(µ1 − µ2)2

]

< a

[
µ2 − µ1

√
1 − µ1 + µ2

µ2
1(µ1 − µ2)

(µ1 − µ2)2

]
= a

(
µ2 − µ1

µ2

µ1

)
= 0,
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i.e. �1(̃νL) < 0. Thus, it follows from (B.1) that �(̃νL) = 0. Taking into consideration
definition (40) of function �(ν), we obtain formula (46).
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